# On Transverse Emittance Dilution due to Multiple Scattering in TeV Flying Wire



Paul Lebrun

Fermilab

Aug 7 2002

### Do we significantly degrade the transverse emittance by flying the wire in TeV?

- Moliere Prediction:
  - $\sim 0.7$  % per fly, for 3 wires, two passes through the beam.
  - Caveats of the calculation.
- Observation: Emittance blow-up is smaller than predicted, by factor 2 to 3.
  - But we scrape the beam! Yes, but not immediately after flying the wire!
- Conclusion: No evidence in the data that this is a serious problem, yet. However, we should check by not flying the wire "that often" during injection.

#### **Moliere Based Calculation.**

- 1: compute x' from emittance. Assuming 20 pi, for  $\beta$  = 80 m, ( $\alpha$  = 0.), E = 150 GeV, ....  $\sigma$  x' ~ 16  $\mu$ Rad
- $-2:\sigma$  x' due to Multiple Scattering:
  - Wire is 30 micron diameter => average thickness is 19 micron.
     → L/R = 0.0001 (Carbon is the material, Lr = 18.8 cm)
  - Every turn, wire move transversely by 75  $\mu$ . For a beam much wider than ~10 m, only ~40% of the beam sees the wire. For this fraction of the beam, per pass, per wire,  $\sigma$  x'  $_{MS} = 0.9$   $\mu$ Rad.
- -3 .. Emittance dilution =  $\sigma x'^2/(\sigma x'^2 + \sigma x'_{MS}^2) = 0.13\%$  per fly per pass per wire.=> .76 % total.

#### **Moliere Caveats:**

- The usual PDG formula based on the Moliere scattering is invalid for radiation length <</li>
   .1%!, which 10 times less than the wire.
- Can't simply add the passes/wires: the angles get randomized in between passes!
- Moliere is probably an overestimate!

#### Proton Vertical Emittance, bunch 1





Error are based on a 4% relative error bar on the measured emitance at ~t=0. (first injection). => We do not observe such a large emitance blow-up, over 2 store, on central orbit or on the helix.

## But we scrape the beam! May be we reached some aperture, the emittance can't grow.





Error are based on a 4% relative error bar on the measured emittance at ~t=0. (first injection). => We do not observe such a large emittance blow-up, over 2 store, on central orbit or on the helix.

#### **Conclusion**

- No evidence in the data that flying the wire dilutes the emittance signficantly.
- For such thin absorbers, not easy to estimate.
- No urgency, we should still measure this!.